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INTRODUCTION

In a series of seminal papers, Flandrin (References 1 and 2) and Tewfik et al.
(References 3 through 5) proved that the Daubechies wavelets decorrelate or "whiten" a
broad class of stochastic processes that have a l/f-type spectra. Concurrently, Scribner et
al. (References 6 through 9) have asserted that a major contributor to the fixed pattern
nonuniformity observed on infrared staring arrays is the 1/f-type spectra associated with
the sampled output of the individual pixels. Using measurement from an Amber 128-by-
128 indium antimonide (InSb) staring array, Hewer and Kuo (References 10 and 11)
combined these two results to demonstrate that the Daubechies wavelets do "whiten" the
1/f-type spectra as predicted. Hewer and Kuo also proposed fractional Brownian motion
(fBm) as a stochastic process that could serve as a possible model for the spectra. The
purpose of this note is to demonstrate that the predicted Daubechies wavelet filtering
properties that were demonstrated for InSb can be extended to microbolometers.

In much of the physics and engineering literature, 1/f noise is characterized by a

spectral family F((o ) --E- or >0 in a neighborhood of the origin with 1 :5 a < 3.

Flicker noise occurs when a = 1, and a= 2 is Brownian noise. The study of such
processes is somewhat paradoxical, because for a = I the spectrum is not integrable on
the semi-infinite interval [0, -). This suggests that the model implies infinite variance and
therefore that the spectrum of the process apparently cannot exist. However, physical
limitations of any experiment impose limits on the frequency range that can be measured.
Moreover, the spectrum will not generally uniquely characterize a stochastic process. In
Hewer and Kuo, fBm was proposed as a possible stochastic model, because it is
compatible with the Daubechies filters and has several properties that match the structure
of the measured pixel time series. In this paper another stochastic model is proposed that
also has a 1/f spectral family. This new model, called power-law shot noise, was derived
by Lowen and Teich (References 12 and 13).

In this note just enough detail is included to explain the terminology and relevant
concepts. The interested reader can find more details and many references in Hewer and
Kuo. The comprehensive review by Wornell (Reference 14) of the 1/f family of fractal
processes and wavelets is recommended.

FRACTIONAL BROWNIAN MOTION

Mandelbrot and Van Ness (Reference 15) introduced the class of stochastic processes
called fractional Brownian motion, which includes ordinary Brownian motion as a special
case. Denoting the process as BH ( t ) it is a zero- mean non stationary stochastic process
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that is indexed by a single scale parameter H. Here we assume that BH( 0 =0 for

convenience. The fBm covariance has the following form for 0 < H < 1.

coy (BH (t ,s)) = E[BH (t)BH (s)] - a (WH + I -FH "]t'f42H)

When the index H = 1/2 the fBm is ordinary Brownian motion.

Several algorithms exist to simulate fBm. The Hosking algorithm (Reference 16)1
simulates fBm with the spectral family 1 and fractional Gaussian noise (fGn) with

2H1

the spectral family -n.- Here H denotes the Hurst coefficient and H = d + 1/2 with

1dj1 Y2. The correlation character of fGn strongly depends on H and is summarized as by

Wornell (Reference 14) and Feder (Reference 17) as shown in Equation 1.

d>0 persistence

d=O no correlation (1)

d<O anti - persistence

POWER-LAW SHOT NOISE

Power-law shot noise, introduced by Lowen and Teich, is defined as follows. The
shot noise is expressed as an infinite sum of power-law impulse response functions

l(t)" .h(t-tj)
in--

where

h(t) m {KOP O<A<t<B

10 otherwise

and the times t, are random events from a homogeneous Poisson point process at a rate

/p. The power spectral density S(o) of the process approaches the constant value as

S(Mo) -- K /2 Ba 2•

(a/2)
and as (0-+0c

S(OW)- UK 2I 2(- )(w)"a
2
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where r(.,.) is the incomplete gamma function defined by

r(q,x) M Je-'tq-Idt.

The parameters A, B, K, a,f, andu (a = 2(1 - )) are deterministic and fixed.

When A > 0 and B < the density function for the amplitude will converge to a
Gaussian distribution (I(t)-+Gaussian) with mean C1 and variance C2 , which are
defined as follows.

,= &(A'A-P-B'_-Yn)/- 1, #,1,

CILBI 4 ' 4 = 1;

. (AI-2P-B1-20)(fl, f 0.5;

C2 ='• AK inB#2f )0.5;
I p I I

DAUBECHIES WAVELETS

"The wavelets qp(t) introduced by Daubechies (Reference 18) are obtained from the
scaling function 0(t), which is the solution of the two-scale difference equation (a
dilation equation)

#(t) = I c(2t- k).
k

If the coefficient sequence {ck} has only a finite number of nonzero terms, the wavelet
p(t) has compact support. The sequence {ck} satisfies the following conditions, which

are respectively a normalizing condition, an orthogonality condition (6, is the discrete
Dirac delta function), and a regularity or vanishing moment condition.

Y.Ck = 42", -CkCk-2m- 26o., Y(-1)kkn Ck=0, m=0,1,-..,p-1 (2)

The wavelet equation is constructed from the sequence {ck} by the quadrature mirror
condition

qKt) = y(-1)k CI-k*(2t - 1).
k

The Haar wavelet has compact support is quite simple and is defined as follows.
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05t<1/2VWtff -1 1/2<9t <I

0 tbrwis

and the scaling function is

+1 O~t<1
00t) = I0;~

0 oherwise

Compactly supported Daubechies wavelets will be denoted by Dp with p = 1,2,...
with DA denoting the Haar wavelet . The coefficients for the first Daubechies wavelet
D 2 are

co =f (I + Nf3)•4 Cl = (3 + -vf3•4

The compactly supported Daubechies wavelets form an orthonormal basis for L2 (R),
which means that any function that is a member of L2(R) can be expanded into a wavelet
series instead of a Fourier series. A function that is a member of L2(R) has "finite power"
and can be expanded into a series using the sequence of wavelets {4i (2it - m)} as the

basis functions. Moreover, for some wavelets all translates and dilates of qp(t) are
mutually orthogonal using the inner product (,)

(;7 qP2-1, r.j,(2,,i )- 6w,

The discrete wavelet coefficients that represent the expansion in the scaling functions are
called the approximation coefficients aj(n)

aj[n] = (flt),,ýT(e2jt - n)) = b.f (t)(2IJ-n)dr,

where f(t) is any function in L2(R). The wavelet expansion coefficients are called the
detail coefficients dj (n), because they represent the difference between two successive

approximations and are computed as follows.

dj[n] = (fQ t) ,ý qV( It - nt)) = ý~ 2-jffQ. () q(2it-n) & 
2 R)

For any finite integer J, {4V70( 2Jt - m)U 4'Tq(2't - m)} is an orthonormal basis for L(R).

Thus, any function f(t) in L2(R) can be written as the nonhomogeneous wavelet infinite
series

6



NAWCWPNS TP 8185

M=90 Y0 m 4oof(t)=;2 2,ajW0)(2Jt-m)+ i, I, Jdj(n)v(2J1-m).

j=Jm=-oo

This series expansion is called a multiresolution decomposition of f(t). The
decomposition is multiresolution, because the approximation coefficients and the detail
coefficients are computed at successively different scales indexed by j. Note the different
role played by the approximation coefficients (a scales) and the detail coefficients (d
scales) in the expansion.

SMOOTHING OF 1/f SIGNALS

Wornell (Reference 14) illustrates extracting a 1/f signal from a background of
additive stationary white noise. Donoho (Reference 19) has proposed wavelet shrinkage
as an attractive alternative for the same purpose. His method shrinks noisy wavelet
coefficients via thresholding. The method has theoretical properties that exceed anything
previously known. His method applies a soft-threshold nonlinearity
71,(w) = sgn(w)(IwI-t). with threshold t to each empirical sample value w in the wavelet

transform d scales. After thresholding the wavelet transform is inverted, yielding the
smoothed data. Applying the soft threshold continuously shrinks the empirical
coefficients in the d scales to zero and thus removes the noise.

SIMULATED ifbm, 1/f SHOT NOISE, AND CAMERA TEST RESULTS

Figures 1 through 12 use simulated iBm to illustrate some important stochastic
estimates that will be applied to the infrared camera data. A complete set of references
and relevant concepts is contained in the SPIE parer or technical report by Hewer and
Kuo (References 10 and 11). Although these results and figures are similar to those found
in Hewer and Kuo, they are included for completeness and for a direct comparison with
the power-law shot noise simulation and the Honeywell microbolometer data.

Figure 1 is a sample path containing 3000 points of an anti-persistent fBm with the
spectral family I for H = 0.1. These samples were generated using the Hosking

W 2H+1

algorithm. 16 Figure 2 shows the corresponding periodograms, a log-log plot of the
periodogram X(co) versus the frequency variable co. The periodogram X(o)) is the
modulus of the Fourier transform Z(x(n))of the discrete sequence {xo,...,xN-l}

X(60)" (=l)(xn))(xn))".
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where N is the total number of samples and ( )* is the complex conjugate. The index H
can be estimated from the slope of the dotted line. It is the least squares fit to the lower
frequencies on the log-log plot of the periodogram.

Figure 3 is the corresponding correlation, which clearly exhibits slow decay with
hyperbolic shape and a significant dependence between observations well separated in
time. The next figure is a plot of the correlation function for the increments. The
increments are obtained by applying the differencing operator V to the fBm sequence
x(n), which yields the derived sequence

Vx(n) = x(n) - x(n-1).

Because the increments of fBm are fGn, the lagged correlation coefficients will all be
positive for persistence and negative for anti-persistence. Because Figure 1 is a sample of
the anti-persistent case, the coefficient is negative as expected.

Figure 5 shows quantile-quantile (Q-Q) plots jf the increments. A Q-Q plot can be
used to compare the degree of agreement between two empirical distributions or to
compare the empirical quantiles with the quantiles from an ideal distribution. A Gaussian
Q-Q plot is a plot of the ordered data y, from the sample {xO,-..,xN-1} versus the normal
quantiles yp, = 0-1 (pi), where p, = (i - Y2 )/N, i = 1,2,.., N, and 4,-' is the inverse of the

standard normal distribution (Reference 20). If the shape of the marginal distributions for
the increments is approximately normal, even in the tails, then the empirical quantile
sample values will approximate the normal line. The approximation in Figure 5 is linear
even in the tails, so the Gaussian hypothesis for the marginal distribution as simulated by
the Hosking fim model is reasonable.

Figure 7 is a plot of the fourth scale detail coefficients d4(n) for the Daubechies Dio
wavelet. The next figure is the corresponding correlation. As expected, the Daubechies
wavelet decorrelates or whitens the fBm process. The reason for this fortuitous
transformation is given by Flandrin (Reference 2) and Tewfik and Kim (Reference 5) and
is related to the vanishing moment properties defined in Equation 2. The survey by
Wornell should be consulted for more discussion of the correlation structure of the
wavelet coefficients. Even though the noise is not Gaussian, Donoho's wavelet shrinkage
algorithm in S+WAVELETS was applied to the iBm signal with satisfactory results as
shown in Figure 8.

Figure 9 is the same iBm sample as in Figure I with the addition of stationary white
noise. The additive noise has a variance of 3.691, which yields a signal-to-noise ratio of
zero decibels. The same processing sequence is reapplied to the signal in Figure 9, and
the results are shown in Figures 10 through 16. These examples show that the processing
is "robust" to additive white noise. Figure 10 demonstrates that the additive white noise
clearly does not affect the low frequencies where the 1/f noise dominates but does
contribute to the high frequencies. The one surprise is that the wavelet shrinkage
produces a smoother curve in Figure 16 than in Figure 8. Figures 11 through 15

8
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demonstrate that the estimation techniques and Daubechies filters are resistant to additive
white noise.

The 1/f shot noise presentation in Figures 17 through 24 parallels the fBm
presentation in Figures 1 through 8. The 1/f shot noise is simulated with parameter values
P = 0.4, K = 1, P = 1, A = 0.01, and B = 50. The sample path in Figure 17 is a vector
of length 5000 with a sampling interval of 0.2. The notation for fBm and the 1/f shot
noise is consistent with the literature. The key relation between the Hurst coefficient H
for the fBm and the parameter beta the power-law shot noise is H = 0.5 - f. The estimate
for beta obtained in Figure 18 is 0.390567, which is consistent with the estimates for

iBm. The remaining figures for this case do not exhibit any unexpected results.

Figures 25 through 40 are an application of the estimation techniques and the
Daubechies filter applied to the camera data. These results are representative and not in
way special or atypical. Figure 25 represents 7000 samples with a 54 Hertz sampling rate
from a single pixel measured by a 128x128 Amber AE 4128 InSb focal plane array. More
details on test conditions are found in Hewer and Kuo.1 1 The estimate 0.158828 for H in

Figure 26 yields an estimate for the spectral F((o)= -;L exponent of 1.317. Figures 27

through 32 are consistent with their simulated counterparts and with the hypothesis that
the temporal pixel noise is a member of the 1/f spectral family.

Figure 33 represents 8046 samples from a single pixel measured by a Honeywell
microbolometer. A bolometer is an infrared detector that measures absorbed, incident
infrared radiation by a voltage change in electrical resistance due to a non equilibrium
temperature differential. The data featured were provided by the Naval Research
Laboratory in Washington., D. C. The images are from a Honeywell uncooled
microbolometer 336-by- 165 IR sensor in the 8- to 12-micron spectral band. The data are
looking at an extended blackbody source at 25'C through an f 1.1 optic with 80%
transmission. The data are digitized to 256 bit accuracy with a 33-millisecond frame time.
More information on the Honeywell microbolometer can be found in Gallo et al.
(Reference 21) and Wood (Reference 22). Again, the results are consistent with their
parallel panels for the Amber camera and the simulated signals.

CONCLUSIONS

In this note the Daubechies wavelets have again filtered and decorrelated the fixed
pattern noise as predicted by the theory of wavelet transforms, when applied to random
signals with a decaying correlation structure. Also a simulated example demonstrate that
power-law shot noise is consistent with the empirical data analysis

9
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FIGURE 2. Periodogram of Figure 1. Estimated H is
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FIGURE 13. Normal Q-Q Plot of Increment of Figure 9.
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FIGURE 14. Daubechies 10 Wavelet d Scale 4 of Figure 9.
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FIGURE 15. Correlation Function of Figure 14.
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FIGURE 16. Wavelet Shrinkage of Figure 9.
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FIGURE 17. 1/f Shot Noise With d = 0.4 (H = 0.1).
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FIGURE 18. Periodogram of Figure 17. Estimated H is
0.109433.

17



NAWCWPNS 1? 8185

o Id go 30

FIGURE 19. Correlation Function of Figure 17.
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FIGURE 21. Normal Q-Q Plot of Increment of Figure 17.
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FIGURE 22. Daubechies 10 Wavelet d Scale 4 of
Figure 17.
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FIGURE 23. Correlation Function of Figure 22.
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FIGURE 24. Wavelet Shrinkage of Figure 17.
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FIGURE 25. 54-Hertz Amber Camera Data, Pixel (8,8).
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FIGURE 26. Periodogram of Figure 25. Estimated H is
0.158828.
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FIGURE 27. Correlation Function of Figure 25.
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Figure 25.
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FIGURE 29. Normal Q-Q Plot of Increment of Figure 25.
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FIGURE 34. Periodogram of Figure 33. Estimated H is
0.42459.

IQ

0

10 20 3040
Lag

FIGURE 35. Correlation Function of Figure 33.
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FIGURE 36. Correlation Function of Increment of
Figure 33.
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FIGURE 38. Daubechies 10 Wavelet d Scale 4 of
Figure 33.
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FIGURE 39. Correlation Function of Figure 38.
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FIGURE 40. Wavelet Shrinkage of Figure 33.
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